Six Not-So-Easy Pieces: Einstein’s Relativity, Symmetry, and Space-Time

Six Not-So-Easy Pieces: Einstein’s Relativity, Symmetry, and Space-Time

Richard P. Feynman, Robert B. Leighton, Matthew Sands

Language: English

Pages: 184

ISBN: 0465025269

Format: PDF / Kindle (mobi) / ePub


It was Feynman’s outrageous and scintillating method of teaching that earned him legendary status among students and professors of physics. From 1961 to 1963, Feynman delivered a series of lectures at the California Institute of Technology that revolutionized the teaching of physics. In Six Not-So-Easy Pieces, taken from these famous lectures, Feynman delves into one of the most revolutionary discoveries in twentieth-century physics: Einstein’s theory of relativity. The idea that the flow of time is not constant, that the mass of an object depends on its velocity, and that the speed of light is a constant no matter what the motion of the observer, at first seemed shocking to scientists and laymen alike. But as Feynman shows, these tricky ideas are not merely dry principles of physics, but things of beauty and elegance.

No one—not even Einstein himself—explained these difficult, anti-intuitive concepts more clearly, or with more verve and gusto, than Richard Feynman. Filled with wonderful examples and clever illustrations, Six Not-So-Easy Pieces is the ideal introduction to fundamentals of physics by one of the most admired and accessible physicists of all times.

“There is no better explanation for the scientifically literate layman.”—The Washington Post Book World

Conjugated Polymers: Processing and Applications (Handbook of Conducting Polymers) (3rd Edition)

Mathematical Physics: A Modern Introduction to Its Foundations (2nd Edition)

The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics

Quantum Phase Transitions (2nd Edition)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“fits” into the enzyme, but the other kind does not (like Cinderella and the slipper, except that it is a “left foot” that we are testing). So far as we know, in principle, we could build a frog, for example, in which every molecule is reversed, everything is like the “left-hand” mirror image of a real frog; we have a left-hand frog. This left-hand frog would go on all right for a while, but he would find nothing to eat, because if he swallows a fly, his enzymes are not built to digest it. The

Einstein figures preeminently in the public conception of this field. It was, indeed, Albert Einstein who, in 1905, first clearly enunciated the profound principles which underlie this new realm of physical endeavor. But there were others before him, most notably Hendrik Antoon Lorentz and Henri Poincaré, who had already appreciated most of the basics of the (then) new physics. Moreover, the great scientists Galileo Galilei and Isaac Newton, centuries before Einstein, had already pointed out that

their appropriate tasks, they can make the physics seem much simpler than otherwise. The ideas of vector calculus are a case in point. The vector calculus of three dimensions was originally developed to handle the physics of ordinary space, and it provides an invaluable piece of machinery for the expression of physical laws, such as those of Newton, where there is no physically preferred direction in space. To put this another way, the physical laws have a symmetry under ordinary rotations in

space. Feynman brings home the power of the vector notation and the underlying ideas for expressing such laws. Relativity theory, however, tells us that time should also be brought under the compass of these symmetry transformations, so a four-dimensional vector calculus is needed. This calculus is also introduced to us here by Feynman, as it provides the way of understanding how not only time and space must be considered as different aspects of the same four-dimensional structure, but the same

captured his audience, went on with his lecture. Showmanship aside, Feynman’s pedagogical technique was simple. A summation of his teaching philosophy was found among his papers in the Caltech Archives, in a note he had scribbled to himself while in Brazil in 1952:First figure out why you want the students to learn the subject and what you want them to know, and the method will result more or less by common sense. What came to Feynman by “common sense” were often brilliant twists that

Download sample

Download

About admin